• Skip to main content
  • Skip to secondary menu
  • Skip to footer

Analysis.org

Intelligence Analysis in Market Context

  • Sponsored Post
    • Make a Contribution
  • Job Board
  • Market Research Reports
    • Technology Analysis
    • Events
  • Domain Analysis
  • About
  • Contact

AI implementation progress in the automotive sector is modest: Uptake on large scale AI projects stalls, however successful adoption can add millions to operating profit

March 26, 2019 By Analysis.org

A new study from the Capgemini Research Institute has found that just 10 percent of major automotive companies are implementing artificial intelligence1 (AI) projects at scale, with many falling short of an opportunity that could increase operating profit by up to 16 percent. The research also shows that fewer automotive companies are implementing AI than in 2017, despite the cost, quality and productivity advantages.

The “Accelerating Automotive’s AI Transformation: How driving AI enterprise-wide can turbo-charge organizational value” study surveyed 500 executives from large automotive companies in eight countries, building on a comparable study from 2017, to establish recent trends in AI investment and deployment. The research highlighted the following potential reasons for the modest progress in relation to AI implementation:

The roadblocks to technology transformation are still significant, such as legacy IT systems, accuracy and data concerns, and lack of skills.
The hype and high expectations that initially came with AI may have turned into a more measured and pragmatic view as companies are confronted with the reality of implementation.
Key findings include:
Scaling of AI has seen a slow growth: Since 2017, the number of automotive companies that have successfully scaled AI implementation has increased only marginally (from seven percent to 10 percent). However, the increase in companies not using AI at all was more significant (from 26 percent to 39 percent). According to the report, just 26 percent of companies are now piloting AI projects (down from 41 percent in 2017). This is maybe due to companies finding it harder to realize a desired return on investment. The results also reveal a significant regional disparity, with 25 percent of U.S. firms delivering AI at scale, compared to nine percent in China.

Automotive organizations can drive significant reward from scaled AI: The modest progress in implementing AI projects at scale represents a major missed opportunity for the industry. Modelling in the report, based on one typical top 50 original equipment manufacturer (OEM), estimates that delivering AI at scale could achieve increases in operating profit ranging from five percent (or $232m) based on conservative estimates, to 16 percent (or $764m) in an optimistic scenario.

“With AI-empowered visual inspection we have sensibly reduced the ratio of false positives with respect to the previous systems,” said Demetrio Aiello, head of the AI & Robotics Labs at Continental. “I am very confident that if we can deploy AI to its fullest potential it would have an impact on performance equivalent to almost doubling our capacity today.”

AI is seen more as a job-creator than a job-replacer: The report showed that the industry has become more positive about AI’s job-creation potential – 100 percent of executives say that AI is creating new job roles, up from 84 percent in 2017.

Where AI is being deployed, it is achieving results: The survey found a consistent story of AI delivering benefits across every automotive business function. On average, it delivered a 16 percent increase in productivity across Research and Development (R&D), operational efficiency improvements of 15 percent in the supply chain and 16 percent in manufacturing/operations, reduced direct costs of 14 percent in customer experience and 17 percent in IT, and reduced time to market by 15 percent in R&D and 13 percent in marketing/sales.

Additionally, a number of successful AI projects are identified and detailed in the research report. One example is Continental generating 5,000 miles of vehicle test data an hour through an AI-powered simulation, compared to 6,500 miles a month it was getting through physical test driving.

Others include:

Volkswagen accurately modeling vehicle sales across 250 auto models in 120 countries using machine learning.2
Mercedes-Benz testing an AI-recognition system for parcel delivery that can reduce vehicle loading time by 15 percent.3
Markus Winkler, Executive Vice President, Global Head of Automotive at Capgemini concludes, “These findings show that the progress of AI in the automotive industry has hit a speedbump. Some companies are enjoying considerable success, but others have struggled to focus on the most effective use cases, vehicle manufacturers need to start seeing AI not as a standalone opportunity, but as a strategic capability required to shape the future which they must organize investment, talent and governance around.”

He continues, “As this research shows, AI can deliver a significant dividend for every automotive business, but only if it is implemented at scale. For AI to succeed, organizations will need to invest in the right skills, achieve the requisite quality of data, and have a management structure that provides both direction and executive support.”

To deliver at scale, companies must invest, upskill and create infrastructure: The report also examined the behaviors of the companies in the survey who have had the most success implementing AI at scale (‘Scale Champions’). It found they had typically,

invested much more in AI (more than $200m a year for 86 percent of Champions),
focused hiring and training efforts on AI skills (32 percent said hiring was relevant to their AI strategy, versus 14 percent of others; 25 percent said they proactively upskilled and re-skilled current employees, compared to eight percent of others); and
created a clear governance structure to prioritize and promote AI, with measures including a central steering to govern AI investment, and a cross-functional team of tech, business and operations experts.
Research Methodology
The Capgemini Research Institute conducted a primary survey of 500 automotive executives from large automotive organizations in eight countries: China, France, Germany, India, Italy, Sweden, United Kingdom and the United States. The research team then conducted in-depth interviews with a number of industry experts and entrepreneurs.

The report can be downloaded here https://www.capgemini.com/wp-content/uploads/2019/03/Ai-in-automotive-research-report.pdf.

About Capgemini
A global leader in consulting, technology services and digital transformation, Capgemini is at the forefront of innovation to address the entire breadth of clients’ opportunities in the evolving world of cloud, digital and platforms. Building on its strong 50-year heritage and deep industry-specific expertise, Capgemini enables organizations to realize their business ambitions through an array of services from strategy to operations. Capgemini is driven by the conviction that the business value of technology comes from and through people. It is a multicultural company of over 200,000 team members in more than 40 countries. The Group reported 2018 global revenues of EUR 13.2 billion (about $15.6 billion USD at 2018 average rate).
Visit us at www.capgemini.com. People matter, results count.

About the Capgemini Research Institute
The Capgemini Research Institute is Capgemini’s in-house research center. The Institute publishes research on the impact of digital technologies on large traditional businesses. The team draws on the worldwide network of Capgemini experts and works closely with academic and technology partners. The Institute has dedicated research centers in India, the United Kingdom and the United States. It was recently ranked #1 in the world for the quality of its research by independent analysts.
Visit us at https://www.capgemini.com/researchinstitute/

1 Artificial intelligence (AI) is a collective term for the capabilities shown by learning systems that are perceived by humans as representing ‘intelligence’. Today, typical AI capabilities include speech, image and video recognition, autonomous objects, natural language processing, conversational agents, prescriptive modeling, augmented creativity, smart automation, advanced simulation, as well as complex analytics and predictions.
2 Automotive World, “VW says OK to AI”, March 2018
3 Daimler website, “Vans as motherships”, September 2018

SOURCE Capgemini

Related Links

Capgemini – home page – Get the future you want

Filed Under: Briefing

Footer

Recent Posts

  • Apple’s Strategic Pivot: Reshaping Its Supply Chain from China to India
  • Asana’s Q4 2025 Results Signal Strengthened Financials and Strategic Gains from AI Integration
  • Snowflake Reports Fourth Quarter and Full-Year Fiscal 2025 Financial Results
  • Dropbox, Inc. Reports Fourth Quarter and Full Year 2024 Financial Results
  • Circle’s Digital Dollar: A New Era in Stable Cryptocurrencies
  • Cloudflare as a Pillar of AI Infrastructure: Paving the Way to $240 and Beyond
  • monday.com Posts Strong Q4 and Fiscal Year 2024 Results with Bold AI Ambitions for 2025
  • Economic Forecasts in Flux: Blue Chip Indicators Highlight Post-Election Uncertainty and AI Disruption
  • Americans Grapple with the True Cost of Living
  • Pyramid Analytics Secures $50M in Financing from BlackRock to Accelerate AI-Driven Analytics

Media Partners

Dossier
Opint
ESN
Peppers
App Coding
3v
Transportational
OSINT
Renewability
Syndicator

Media Partners

Press Media Release
Briefly
Media Gallery
tography
Prints
Nameable
Opinion
Domain Market Research
S3H
Event Calendar

Copyright © 2017 Analysis.org

Technologies, Market Analysis & Market Research Reports

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT