• Skip to main content
  • Skip to secondary menu
  • Skip to footer

Analysis.org

Intelligence Analysis in Market Context

  • Sponsored Post
    • Make a Contribution
  • Job Board
  • Market Research Reports
    • Technology Analysis
    • Events
  • Domain Analysis
  • About
  • Contact

Top Big Data & Analytics Predictions for 2020

January 7, 2020 By Analysis.org

Innovations in the cloud and the rise of more efficient ways to collect, access, and analyze big data, have rapidly improved the amount of value enterprises are getting from their data. In 2020, enterprises will evolve in how they approach data maturity and strategize cloud investments.

According to Tomer Shiran, co-founder and CEO of Dremio, the new year will bring compelling reasons to focus on modern cloud data lakes; increased efficiency of cloud services to remarkably reduce cloud computing costs; easier ways to make IoT data a valuable business asset; and open source innovations to accelerate analytics results. The following five major trends guide his predictions for 2020.

Cloud data warehouses turn out to be a big data detour.

Given the tremendous cost and complexity associated with traditional on-premise data warehouses, it wasn’t surprising that a new generation of cloud-native enterprise data warehouse emerged. But savvy enterprises have figured out that cloud data warehouses are just a better implementation of a legacy architecture, and so they’re avoiding the detour and moving directly to a next-generation architecture built around cloud data lakes. In this new architecture data doesn’t get moved or copied, there is no data warehouse and no associated ETL, cubes, or other workarounds. We predict 75 percent of the global 2000 will be in production or in pilot with a cloud data lake in 2020, using multiple best-of breed engines for different use cases across data science, data pipelines, BI, and interactive/ad-hoc analysis.

Enterprises say goodbye to performance benchmarks, hello to efficiency benchmarks.

Escalating public cloud costs have forced enterprises to re-prioritize the evaluation criteria for their cloud services, with higher efficiency and lower costs now front and center. The highly elastic nature of the public cloud means that cloud services can (but don’t always) release resources when not in use. And services which deliver the same unit of work with higher performance are in effect more efficient and cost less. In the on-premises world of over-provisioned assets such gains are hard to reclaim. But in the public cloud time really is money. This has created a new battleground where cloud services are competing on the dimension of service efficiency to achieve the lowest cost per compute, and 2020 will see that battle heat up.

IoT data finally becomes queryable.

The explosion of IoT devices has created a flood of data typically landing in data lake storage such as AWS S3 and Microsoft ADLS as the system of record. But while capturing and storing IoT data is easy, the semi-structured nature of IoT data makes it difficult to process and use: data engineers are forced to build and maintain complex, and often brittle, data pipelines to enrich IoT data, add context to it, and accelerate it. Software AG has stepped in to tackle this problem head on with their Cumulocity IoT Data Hub, and we predict in 2020 IoT data will be directly queryable at high performance via business intelligence, self-service analytic, machine learning, or SQL-based tools.

The rise of data microservices for bulk analytics.

Traditional operational microservices have been designed and optimized for processing small numbers of records, primarily due to bandwidth constraints with existing protocols and transports. But now this long-standing bottleneck issue has been solved with the arrival of Apache Arrow Flight, which provides a high performance, massively parallel protocol for big data transfer across different applications and platforms. We predict that in 2020 Arrow Flight will unleash a new category of data microservices focused on bulk analytical operations with high volumes of records, and in turn these data microservices will enable loosely coupled analytical architectures which can evolve much faster than traditional monolithic analytical architectures.

Apache Arrow becomes fastest project to reach 10M downloads/month.

Apache Arrow (co-created by Dremio) has firmly established the industry-standard for columnar, in-memory data representation and sharing, powering dozens of open source & commercial technologies and making data science 100 to 1000X faster. Arrow has already achieved over 6M monthly downloads in the three years since release, with downloads continuing to grow exponentially. As a result, we predict Arrow will reach 10M downloads/month in 2020, faster than any other Apache project. And with the release of Apache Arrow Flight (also co-created by Dremio) this past October, the performance benefits of Arrow are being extended to the Remote Procedure Call (RPC) layer further increasing data interoperability. While Arrow Flight is just getting started, we predict that by 2025 it will replace decades-old ODBC/JDBC as the de facto way in which all modern data systems communicate.

Tweet this: .@Dremio 2020 predictions #cloud #datalake #analytics #bigdata #iot #opensource https://www.dremio.com/press-releases/

About Dremio
Dremio’s Data Lake Engine delivers fast query speed and a self-service semantic layer operating directly against data lake storage. Dremio eliminates the need to copy and move data to proprietary data warehouses or create cubes, aggregation tables and BI extracts, providing flexibility and control for Data Architects, and self-service for Data Consumers. For more information, visit www.dremio.com

Filed Under: Briefing Tagged With: Analytics, Big Data

Footer

Recent Posts

  • Apple’s Strategic Pivot: Reshaping Its Supply Chain from China to India
  • Asana’s Q4 2025 Results Signal Strengthened Financials and Strategic Gains from AI Integration
  • Snowflake Reports Fourth Quarter and Full-Year Fiscal 2025 Financial Results
  • Dropbox, Inc. Reports Fourth Quarter and Full Year 2024 Financial Results
  • Circle’s Digital Dollar: A New Era in Stable Cryptocurrencies
  • Cloudflare as a Pillar of AI Infrastructure: Paving the Way to $240 and Beyond
  • monday.com Posts Strong Q4 and Fiscal Year 2024 Results with Bold AI Ambitions for 2025
  • Economic Forecasts in Flux: Blue Chip Indicators Highlight Post-Election Uncertainty and AI Disruption
  • Americans Grapple with the True Cost of Living
  • Pyramid Analytics Secures $50M in Financing from BlackRock to Accelerate AI-Driven Analytics

Media Partners

Opinion
Studio Tel Aviv
Photo Studio
S3H
Event Calendar
Agile Soft Dev
Brands to Shop
Domain Market Research
Defense Market
Calendarial

Media Partners

Digital Market
OSINT
Peppers
ESN
Photo Studio
Travel MKTG
Dossier
Briefly
Opint
Side Hustle Art

Copyright © 2017 Analysis.org

Technologies, Market Analysis & Market Research Reports

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT